半導體激光吸收光譜技術(DLAS)最早于 20世紀70 年代提出。初期的 DLAS 技術使用中遠紅外波長的鉛鹽激光器,這種激光器以及相應的中遠紅外光電傳感器在當時只能工作在非常低的液氮甚至液氦溫度下,從而限制了它在工業(yè)過程氣體分析領域的應用,只是一種實驗室研究用技術。隨著半導體激光技術在 20世紀80 年代的迅速發(fā)展,DLAS技術開始被推廣應用于大氣研究、環(huán)境監(jiān)測、醫(yī)療診斷和航空航天等領域。特別是20世紀90 年代以來,基于DLAS技術的現(xiàn)場在線分析儀表已逐漸發(fā)展成熟,與非色散紅外、電化學、色譜等傳統(tǒng)工業(yè)過程分析儀表相比,具有可以實現(xiàn)現(xiàn)場原位測量、無須采樣和樣品處理系統(tǒng)、測量準確、響應迅速、維護量小等顯著優(yōu)勢,在工業(yè)過程分析和污染源監(jiān)測領域發(fā)揮著越來越重要的作用。
為了達到更高的測量精度,更低的探測下限,DLAS 技術在持續(xù)地發(fā)展。為了抑制噪聲、提高精度,在調制技術方面從直接吸收光譜技術發(fā)展到波長調制光譜技術和頻率調制光譜技術等;為了增加光束穿過被測氣體的有效光程,降低探測下限,從單倍光程的測量方式發(fā)展到利用Herriott 腔、White 腔等實現(xiàn)多次往返吸收光譜;為了在光譜吸收較強的基帶頻率進行測量,降低測量下限,波長在中紅外和遠紅外波段的量子級聯(lián)半導體激光器被應用在各種 DLAS 技術中;另外也可以與光聲檢測技術結合產(chǎn)生激光光聲光譜技術。
氣體吸收光譜原理
(1)朗伯一比爾定律
DLAS 技術本質上是一種光譜吸收技術,通過分析激光被氣體的選擇性吸收來獲得氣體的濃度。它與傳統(tǒng)紅外光譜吸收技術的不同之處在于,半導體激光光源的光譜寬度遠小于氣體吸收譜線的展寬。因此,DLAS技術是一種高分辨率的光譜吸收技術,半導體激光穿過被測氣體的光強衰減可用朗伯一比爾定律表述∶
Iv= Iv,0T(u)= Iv0exp[-S(T)g(V-V0)pXL]
≈ Iv,0【1-S(T)g(V-V0)XL】
式中 Iv,0和Iv——分別表示頻率為V的激光入射時和經(jīng)過壓力p、濃度X和光程L的氣體后的光強;
S(T)---氣體吸收譜線的強度;
g(v-v0)線性函數(shù)---表征該吸收譜線的形狀。
通常情況下,氣體的吸收較小時(濃度較低時),可用上式來近似表達氣體的吸收。這些關系式表明氣體濃度越高,對光的衰減也越大。因此,可通過測量氣體對激光的衰減來測量氣體的濃度。
(2)光譜線的線強
氣體分子的吸收總是和分子內(nèi)部從低能態(tài)到高能態(tài)的能級躍遷相聯(lián)系的。線強S(T)反映了躍遷過程中受激吸收、受激輻射和自發(fā)輻射之間強度的凈效果,是吸收光譜譜線最基本的屬性,由能級間躍遷幾率以及處于上下能級的分子數(shù)目決定。分子在不同能級之間的分布受溫度的影響,因此光譜線的線強也與溫度相關。